
BigDAWG Documentation
Release 0.1

BigDAWG Developers

Mar 26, 2017

CONTENTS

1 Welcome to BigDAWG documentation 1
1.1 Introduction . 1
1.2 A simple example . 1
1.3 Get the code . 2
1.4 Contributing . 2
1.5 Table of Contents . 2

2 Introduction and Overview 3
2.1 Team . 3
2.2 Polystore Systems . 3
2.3 BigDAWG Approach . 4
2.4 Major BigDAWG Components . 4
2.5 MIMIC II dataset . 5

3 Getting Started with BigDAWG 7
3.1 Prerequisites . 7
3.2 BigDAWG Cluster Setup Steps . 8
3.3 Run Example Queries . 10
3.4 Output Logs . 13
3.5 Viewing the Catalog . 14
3.6 Shutdown . 14
3.7 Docker Networking and Container Reference . 14
3.8 MIMIC II dataset . 16
3.9 Install the Administrative Web Interface . 16

4 BigDAWG Middleware Internal Components 21
4.1 Query Endpoint . 21
4.2 Middleware Components . 22
4.3 Catalog . 22
4.4 Planner . 24
4.5 Migrator . 24
4.6 Executor . 26
4.7 Monitor . 27

5 BigDAWG Query Language 29
5.1 BigDAWG Syntax Definitions . 29

6 Personalizing the setup 35
6.1 Administrative Web Interface: . 35
6.2 Formulating Example Queries: . 35
6.3 Adding your own data: . 36

i

6.4 Adding your own engine . 37
6.5 Connecting to existing databases . 37
6.6 Adding your own island . 38

7 Selected BigDAWG Publications 41
7.1 Overall architecture: . 41
7.2 BigDAWG applications: . 41
7.3 BigDAWG Middleware: . 41
7.4 Contributors . 42
7.5 Acknowledgement . 42
7.6 Contributors . 42
7.7 Alumni/Collaborators . 42

8 Frequently Asked Questions 45

ii

CHAPTER

ONE

WELCOME TO BIGDAWG DOCUMENTATION

1.1 Introduction

The Intel Science and Technology Center for Big Data is developing an open-source reference implementation of
a Polystore database. The BigDAWG (Big Data Working Group) system supports heterogeneous database engines,
multiple programming languages and complex analytics for a variety of workloads.

Fig. 1.1: BigDAWG Architecture

This BigDAWG release contains our initial prototype of a polystore middleware as well as support for 3 database
engines: PostgreSQL, SciDB, and Accumulo. The architecture for this release is shown above.

Our goal with this release is to give end-users and database researchers an idea about what a Polystore database looks
like. For the most part, we hope that you will download the release, experiment with the data we have distributed and
create your own queries. Please do reach out to us if you have some bigger goals in mind or if you run into any issues
while using this release - we are happy to help you navigate.

1.2 A simple example

Before we get into the details of what BigDAWG is, here is a very simple query example. This query execute a
relational island query on a polystore storing MIMIC II data in the BigDAWG language:

curl -X POST -d "bdrel(select * from mimic2v26.d_patients limit 4;)" http://
→˓localhost:8080/bigdawg/query/

1

BigDAWG Documentation, Release 0.1

Output:

subject_id sex dob dod hospital_expire_flg
1039 M 3063-10-05 00:00:00.0 3147-04-05 00:00:00.0 Y
1010 F 2620-12-07 00:00:00.0 2688-07-30 00:00:00.0 Y
1000 M 2442-05-11 00:00:00.0 2512-03-02 00:00:00.0 Y
1038 M 2747-06-02 00:00:00.0 2807-11-13 00:00:00.0 N

For further details on what islands are, please refer to the Introduction and Overview section or refer to any one of our
numerous publications that describe BigDAWG.

1.3 Get the code

What you need to get started is in Getting Started with BigDAWG section.

For (future) reference, the short version is:

The source source is available on GitHub.

Within the Docker toolbox, go into the provisions directory of the above repository and run setup_bigdawg_docker.sh:

./setup_bigdawg_docker.sh

This should start up three databases and middleware. You should now be able to execute a query such as the one above
in a seperate window.

1.4 Contributing

We hope that you find this area of research as interesting as we do! We look forward to community invovlement. If
you are interested in contributing, please let us know, we have many ideas where we could use help.

We have many ideas for new contributors such as adding new engines, islands and improving middleware capabilities.
If this sounds interesting, let us know and we can set up a time to chat.

Website: http://bigdawg.mit.edu

The mailing list for the project is located at google groups: http://groups.google.com/group/bigdawg To contact the
BigDAWG developers: bigdawg-help@mit.edu

1.5 Table of Contents

2 Chapter 1. Welcome to BigDAWG documentation

https://github.com/bigdawg-istc/bigdawg
http://bigdawg.mit.edu
http://groups.google.com/group/bigdawg
mailto:bigdawg-help@mit.edu

CHAPTER

TWO

INTRODUCTION AND OVERVIEW

2.1 Team

BigDAWG is an open source project from researchers within the Intel Science and Technology Center for Big Data
(ISTC). Everything we do at the ISTC is open intellectual property so anyone is free to use whatever we produce.

The ISTC is based at MIT but includes researchers from Brown University, the University of Chicago, Northwestern
University, the University of Washington, Portland State University, Carnegie Mellon University, the University of
Tennessee, and, of course, Intel.

2.2 Polystore Systems

The slogan is now famous in the database community. “One size does not fit all”. If data storage engines match the
data, performance of data intensive applications are greatly enhanced. We’ve done significant performance analsys and
have found that using the right storage engine for the job can give you orders of magnitude in performance advantage.
Even beyond performance advantages, often organizations already have their data spread across a number of storage
engines. Writing connectors across N different systems can lead to a lot of work for developers and make the cost of
adding a new system very high.

This has led us to develop database technologies we call “Polystore Systems.” A polystore system is any database
management system (DBMS) that is built on top of multiple, heterogeneous, integrated storage engines. Each of these
terms is important to distinguish a Polystore from conventional federated DBMS.

Obviously, a polystore must consist of multiple data stores. However, polystores should not to be confused with a
distributed DBMS which consists of replicated instances of a storage engine sitting behind a single query engine. The
key to a polystore is that the multiple storage engines are distinct and accessed separately through their own query
engine.

Therefore, storage engines must be heterogeneous in a polystore system. If they were the same, it would violate the
whole point of polystore systems; i.e. the mapping of data onto distinct storage engines well suited to the features of
components of a complex data set.

Finally, the storage engines must be integrated. In a federated DBMS, the individual storage engines are independent.
In most cases, they are not managed by a single administration team. In a polystore system, the storage engines are
managed together as an integrated set. This is key since it means that in a polystore system, you can modify engines
or the middleware managing them such that “the whole is greater than the sum of their parts.”

The challenge in designing a polystore system is to balance two often conflicting forces.

• Location Independence: A query is written and the system figures out which storage engine it targets.

• Semantic Completeness: A query can exploit the full set of features provided by a storage engine.

3

BigDAWG Documentation, Release 0.1

The BigDAWG project described in this document is our reference implementation of this polystore concept. As we
will see in the next section, BigDAWG uses the concepts of “islands” to balance these forces.

2.3 BigDAWG Approach

Fig. 2.1: BigDAWG Architecture

Figure 1 describes the overall BigDAWG architecture. This figure is a representation of the BigDAWG polystore
system integrated with higher level components to solve end-user applications. At the bottom, we have a collection of
disparate storage engines (we make no assumption about the data model, programming model, etc. of each of these
engines). These are organized into a number of islands. An island is composed of a data model, a set of operations and
a set of candidate storage engines. An island provides location independence among its associated storage engines.

A shim connects an island to one or more storage engines. The shim is basically a translator that maps queries
expressed in terms of the operations defined by an island into the native query language of a particular storage engine.

A key goal of a polystore system is for the processing to occur on the storage engine best suited to the features of the
data. We expect in typical workloads that queries will produce results best suited to particular storage engines. Hence,
BigDAWG needs a capability to move data directly between storage engines. We do this with software components
we call casts.

2.4 Major BigDAWG Components

BigDAWG is at its core middleware that supports a common application programming interface (API) to a collection
of storage engines. The middleware contains a number of key elements:

• Optimizer: parses the input query and creates a set of viable query plan trees with possible engines for each
subquery

• Monitor: uses performance data from prior queries to determine the query plan tree with the best engine for
each subquery.

• Executor: figures out how to best join the collections of objects and then executes the query.

4 Chapter 2. Introduction and Overview

BigDAWG Documentation, Release 0.1

Fig. 2.2: Internal Components of the BigDAWG Middleware

• Migrator: moves data from engine to engine when the plan calls for such data motion.

Each of these components will be described in more detail in a later section.

2.5 MIMIC II dataset

to demonstrate BigDAWG in action, we are using data collected by the PhysioNet group (https://physionet.org/
mimic2/). The MIMIC II dataset contains medical data collected from medical ICUs over a period of 8 years. The
MIMIC II datasets consists of structured patient data (for example, things filled in an electronic health record), unstruc-
tured data (for example, of the nurse/doctor reports), and time-series waveform data (for example, data collected from
different machines one may be connected to while in the EHR). The MIMIC II dataset is a great example of where a
polystore solution may work well. The structural parts of the data can sit well in a traditional relational database, the
free-form text in a key-value store and the time series waveforms in an array database.

In this release, we provide simple scripts to download this data and load it into appropriate databases. While we only
leveraging data the unrestricted parts of the data that do not require registration, we recommend you take a look at
Getting Access to the Full Dataset . Also, if you are using any of their data in your results, please be sure to cite them
appropriately.

2.5. MIMIC II dataset 5

https://physionet.org/mimic2/
https://physionet.org/mimic2/
https://physionet.org/mimic2/demo/
https://physionet.org/mimic2/mimic2_access.shtml

BigDAWG Documentation, Release 0.1

6 Chapter 2. Introduction and Overview

CHAPTER

THREE

GETTING STARTED WITH BIGDAWG

This section describes how to start a BigDAWG cluster, load an example dataset, and run several example queries.

Fig. 3.1: BigDAWG Cluster Components

A BigDAWG cluster consists of the Middleware, Query Endpoint, Catalog, and multiple database engines. You can
learn more about these components in the BigDAWG Middleware Internal Components section.

The purpose of this section is to guide you through the process of setting up a BigDAWG cluster with Docker, the
open-source technology that allows you to deploy applications inside software containers. You will pull baseline
images from our Dockerhub repository, run images as instantiated containers, and then run scripts to populate the
engines with test data. The current release of BigDAWG includes images for PostgreSQL, SciDB, and Accumulo.

A video demonstration of these steps is also available to watch.

3.1 Prerequisites

To complete this guide, you will need basic knowledge of working with your computer’s command prompt/terminal,
Docker, and Linux commands. You will also need your computer’s port 8080 available and will need administrator
privileges on your system to install Docker.

Compatible Docker Installation

To follow the steps in this section, you will need to first install Docker on your system. If your system is running Mac
OSX or Windows, you should install Docker Toolbox. Follow the download and installation steps from the Docker
website.

7

https://www.docker.com/
https://www.docker.com/what-docker
http://tiny.cc/k310gy
https://www.docker.com/products/docker-toolbox

BigDAWG Documentation, Release 0.1

Note: BigDAWG has been tested on these versions of Docker:

• Docker version 1.11.1, build 5604cbe (Tested on Ubuntu 14.04)

• Docker version 1.12.1, build 6f9534c (Tested on Docker Toolbox for Mac, version 0.8.1, build 41b3b25)

• Docker version 1.12.6, build 78d1802 (Tested on Docker Toolbox for Mac)

Note: Do not use “Docker for Mac” or “Docker for Windows”, which are two alternative Docker applications,
because of known networking limitations that interfere with this example. If your system is runnig Linux, then install
Docker for Linux.

BigDAWG source code

Obtain the source code by cloning the git repository:

git clone https://github.com/bigdawg-istc/bigdawg.git

Alternatively, download the code directly from the website https://github.com/bigdawg-istc/bigdawg.git

3.2 BigDAWG Cluster Setup Steps

(Mac and Windows only) Open a Quickstart Terminal to Execute Docker Commands

Launch the Docker Quickstart Terminal application, which was installed when installing Docker Toolbox (this initial-
ization can take some time). Launching this application will run a Docker host VM and open an initialized terminal
window. Without this terminal, you will not be able to execute docker commands.

Fig. 3.2: Docker Quickstart Terminal Successfully Initialized

The status shown above means that Docker was started successfully.

Navigate to the “provisions” directory of the source code root

The source code root is a directory called “bigdawg”. All scripts executed in this tutorial assume that you are in the
bigdawg/provisions directory.

Run the Docker setup script:

./setup_bigdawg_docker.sh

8 Chapter 3. Getting Started with BigDAWG

https://docs.docker.com/docker-for-mac/networking/#/known-limitations-use-cases-and-workarounds
https://docs.docker.com/engine/installation/linux/
https://github.com/bigdawg-istc/bigdawg.git

BigDAWG Documentation, Release 0.1

This script take will start a BigDAWG cluster using Docker containers. It can take up to 15-30 minutes to complete
depending on your computer resources and internet connection. The script works in the following stages:

1. Create a Docker network called bigdawg that allows the containers to communicate with each other.

2. Pull “base” docker images from Docker Hub that encapsulate the database engines but contain no data.

3. Run the images as instantiated containers.

4. Download publically-available MIMIC II data. The BigDAWG project does not ship with any of data itself, so
all data is downloaded from external sources.

5. Execute scripts on the contianers to insert data into the engines.

6. Start the BigDAWG Middleware on each container, and accept queries on the
bigdawg-postgres-catalog container.

After the setup script completes, you will get a message:

Starting HTTP server on: http://bigdawg-postgres-catalog:8080/bigdawg/
2017-03-21 14:17:01,873 2767 istc.bigdawg.network.NetworkIn.receive(NetworkIn.
→˓java:39) [pool-2-thread-1] null DEBUG istc.bigdawg.network.NetworkIn - tcp://*:9991
2017-03-21 14:17:02,072 2966 istc.bigdawg.network.NetworkIn.receive(NetworkIn.
→˓java:43) [pool-2-thread-1] null DEBUG istc.bigdawg.network.NetworkIn - Wait for the
→˓next request from a client ...
Mar 21, 2017 2:17:23 PM org.glassfish.grizzly.http.server.NetworkListener start
INFO: Started listener bound to [bigdawg-postgres-catalog:8080]
Jersey app started with WADL available at http://bigdawg-postgres-catalog:8080/
→˓bigdawg/application.wadl
Hit enter to stop it...

If you hit any key, the Middleware execution will quit. Therefore, make sure to run any additional commands in a
separate termainal window.

Optional setup verification

As an optional step, you can verify that the images were pulled successfully and check their running status.

To do this, create a separate Docker Quickstart terminal and run the following commands:

Check the status of all images:

docker images

user@local:~$ docker images
REPOSITORY TAG IMAGE ID CREATED SIZE
bigdawg/accumulo latest 804fa44f5eb4 2 seconds ago 1.656 GB
bigdawg/scidb latest c1b578c504bb 8 seconds ago 1.237 GB
bigdawg/postgres latest 1a2600f05cbb 12 seconds ago 1.086 GB

You should see the three images as shown above if the pull (phase 2 above) was successful.

Check the status of all running containers:

docker ps

user@local:~$ docker ps
CONTAINER ID IMAGE STATUS PORTS
→˓ NAMES
ef66f13c4694 bigdawg/accumulo Up 1 minute 0.0.0.0:42424->42424/tcp
→˓ bigdawg-accumulo-proxy
3e02a26c9da5 bigdawg/accumulo Up 1 minute 0.0.0.0:9999->9999/tcp, 0.0.0.0:50095-
→˓>50095/tcp bigdawg-accumulo-master

3.2. BigDAWG Cluster Setup Steps 9

BigDAWG Documentation, Release 0.1

13deae26bff7 bigdawg/accumulo Up 1 minute 0.0.0.0:9997->9997/tcp
→˓ bigdawg-accumulo-tserver0
c6e6b8185d7f bigdawg/accumulo Up 1 minute 0.0.0.0:2181->2181/tcp
→˓ bigdawg-accumulo-zookeeper
7d3135d17a7e bigdawg/accumulo Up 1 minute
→˓ bigdawg-accumulo-namenode
3b1710639c09 bigdawg/scidb Up 1 minute 0.0.0.0:1239->1239/tcp
→˓ bigdawg-scidb-data
4d119d50458c bigdawg/postgres Up 1 minute 0.0.0.0:5402->5402/tcp
→˓ bigdawg-postgres-data2
626ba8425e5b bigdawg/postgres Up 1 minute 0.0.0.0:5401->5401/tcp
→˓ bigdawg-postgres-data1
e4fe27b0c8ed bigdawg/postgres Up 1 minute 0.0.0.0:5400->5400/tcp, 0.0.0.0:8080->
→˓8080/tcp bigdawg-postgres-catalog

You should see all the containers running as shown above if the run (phase 3 above) was successful.

3.3 Run Example Queries

Warning: These commands will not work if you are using a VPN connection or cannot access the Docker host IP
address. If VPN is necessary for your system, contact us for tips that you may be able to use to work around this.

Warning: Your system must have port 8080 available for the Middleware to initialize successfully.

Once the containers are running, the Catalog container will run the Query Endpoint (a simple HTTP server) listening
on port 8080. The container is configured to publish its port 8080 to the Docker VM’s port 8080, so that queries sent
to that port will be routed to the Query Endpoint. You can then submit queries to this port like so:

$ curl -X POST -d "bdrel(select * from mimic2v26.d_patients limit 4;)" http://192.168.
→˓99.100:8080/bigdawg/query/

Here, we are using curl, a shell command, to handle requests and responses to and from a web server, in this case
the Query Endpoint, over the HTTP protocol.

Example Queries

In this section, we describe a few queries on the MIMIC II dataset that you can execute once you have successfully
completed the above steps.

All queries use the following syntax:

$ curl -X POST -d "<query-goes-here>" http://192.168.99.100:8080/bigdawg/query/

We are making a POST request to send the query string as data to the Query Endpoint at the resource /bigdawg/
query/. The IP address 192.168.99.100 is used by the Docker host VM, which is forwarding its port 8080 to
the container running the Query Endpoint.

1) postgres only

10 Chapter 3. Getting Started with BigDAWG

BigDAWG Documentation, Release 0.1

bdrel(select * from mimic2v26.d_patients limit 4)

This query uses the relational island (bdrel) to select 4 entries from the table mimic2v26.d_patients.

Here is the full curl command:

curl -X POST -d "bdrel(select * from mimic2v26.d_patients limit 4;)" http://192.168.
→˓99.100:8080/bigdawg/query/

2) scidb only

bdarray(filter(myarray,dim1>150))

This query uses the array island (bdarray) to filter all entries in the array myarray with dim1 greater than 150.
Note The SciDB connector is in beta mode.

Here is the full curl command:

curl -X POST -d "bdarray(filter(myarray,dim1>150));" http://192.168.99.100:8080/
→˓bigdawg/query/

3) accumulo only

bdtext({ 'op' : 'scan', 'table' : 'mimic_logs', 'range' : { 'start' : ['r_0001','','
→˓'], 'end' : ['r_0015','','']} })

This query uses the text island (bdtext) to scan all entries in the Accumulo table mimic_logs with row keys
between r_0001 and r_00015.

Here is the full curl command:

curl -X POST -d "bdtext({ 'op' : 'scan', 'table' : 'mimic_logs', 'range' : { 'start'
→˓: ['r_0001','',''], 'end' : ['r_0015','','']} });" http://192.168.99.100:8080/
→˓bigdawg/query/

4) postgres to postgres

bdrel(select * from mimic2v26.additives,mimic2v26.admissions where mimic2v26.
→˓additives.subject_id=mimic2v26.admissions.subject_id limit 10)

This query joins data stored in two seperate postgres instances. Essentially, the tables mimic2v26.additives,
mimic2v26.admissions are split among two different postgres instances.

Here is the full curl command:

curl -X POST -d "bdrel(select * from mimic2v26.additives,mimic2v26.admissions where
→˓mimic2v26.additives.subject_id=mimic2v26.admissions.subject_id limit 10;)" http://
→˓192.168.99.100:8080/bigdawg/query/

5) scidb to postgres

bdrel(select * from bdcast(bdarray(filter(myarray,dim1>150)), tab6, '(i bigint, dim1
→˓real, dim2 real)', relational))

This query moves data from scidb to postgres. The bdarray() portion of the query filters all entries in the scidb array
myarray with dim1>150. The bdcast() portion of the query tells the middleware to migrate this resultant array
to a table called tab6 with schema (i bigint, dim1 real, dim2 real) to a database in the relational
island. The final bdrel() portion of the query selects all entries from this resultant table in postgres.

3.3. Run Example Queries 11

BigDAWG Documentation, Release 0.1

Here is the full curl command:

curl -X POST -d "bdrel(select * from bdcast(bdarray(filter(myarray,dim1>150)), tab6,
→˓'(i bigint, dim1 real, dim2 real)', relational))" http://192.168.99.100:8080/
→˓bigdawg/query/

6) postgres to scidb

bdarray(scan(bdcast(bdrel(SELECT poe_id, subject_id FROM mimic2v26.poe_order LIMIT 5),
→˓ poe_order_copy, '<subject_id:int32>[poe_id=0:*,10000000,0]', array)))

This query moves data from postgres to scidb. The bdrel() portion of the array selects the columns poe_id,
subject_id FROM mimic2v26.poe_order. The bdcast() portion of the query tells the middleware to
migrate this data to an array called poe_order_copy with schema <subject_id:int32>[poe_id=0:*,
10000000,0] in the array island. The final bdarray() portion of the query scans this resultant array in scidb.
Note The SciDB connector is in beta mode. We are having some problems with the current SciDB JDBC connector in
which delivery of result arrays where dimensions span more than one chunk can lead to an error.

Here is the full curl command:

curl -X POST -d "bdarray(scan(bdcast(bdrel(SELECT poe_id, subject_id FROM mimic2v26.
→˓poe_order LIMIT 5), poe_order_copy, '<subject_id:int32>[poe_id=0:*,10000000,0]',
→˓array)));" http://192.168.99.100:8080/bigdawg/query/

7) accumulo to postgres

bdrel(select * from bdcast(bdtext({ 'op' : 'scan', 'table' : 'mimic_logs', 'range' :
→˓{ 'start' : ['r_0001','',''], 'end' : ['r_0020','','']} }), tab1, '(cq1 text, mimic_
→˓text text)', relational))

This query moves data from accumulo to postgres. The bdtext() portion of the query scans the accumulo table
mimic_logs from row keys r_0001 to r_00020. The bdcast() portion of the query tells the middleware to
migrate these resultant key-value pairs to a table called tab1 with schema (cq1 text, mimic_text text)
in the relational island. The final bdrel() portion of the query selects all entries from this resultant table.

Here is the full curl command:

curl -X POST -d "bdrel(select * from bdcast(bdtext({ 'op' : 'scan', 'table' : 'mimic_
→˓logs', 'range' : { 'start' : ['r_0001','',''], 'end' : ['r_0020','','']} }), tab1,
→˓'(cq1 text, mimic_text text)', relational))" http://192.168.99.100:8080/bigdawg/
→˓query/

8) postgres to accumulo

bdtext({ 'op' : 'scan', 'table' : 'bdcast(bdrel(select * from mimic2v26.icd9 limit 4),
→˓ res, '', text)'})

This query moves data from postgres to accumulo. The bdrel() portion of the query select 4 entries from the table
mimic2v26.icd9. The bdcast() portion of the query tells the middleware to migrate these entries to a text
island table called res. Finally, the bdtext() portion of hte array scans this resultant table.

Here is the full curl command:

curl -X POST -d "bdtext({ 'op' : 'scan', 'table' : 'bdcast(bdrel(select * from
→˓mimic2v26.icd9 limit 4), res, '', text)'})" http://192.168.99.100:8080/bigdawg/
→˓query/

12 Chapter 3. Getting Started with BigDAWG

BigDAWG Documentation, Release 0.1

3.4 Output Logs

All logging is saved to a Postgres database called logs which resides on the bigdawg-postgres-catalog
container. You can attach to the container by running the following Docker command in a separate Quickstart Terminal:

user@local:~$ docker exec -it bigdawg-postgres-catalog bash
postgres@bigdawg-postgres-catalog:/$

This command will attach to the bigdawg-postgres-catalog container, and logs you in as the user
postgres, so you can execute psql queries from there.

postgres@bigdawg-postgres-catalog:/$ psql
psql (9.4.10)
Type "help" for help.

postgres=# \l
List of databases

Name | Owner | Encoding | Collate | Ctype | Access privileges
-----------------+----------+----------+---------+---------+-----------------------
bigdawg_catalog | postgres | UTF8 | C.UTF-8 | C.UTF-8 |
bigdawg_schemas | postgres | UTF8 | C.UTF-8 | C.UTF-8 |
logs | pguser | UTF8 | C.UTF-8 | C.UTF-8 |
postgres | postgres | UTF8 | C.UTF-8 | C.UTF-8 |
template0 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres +

| | | | | postgres=CTc/postgres
template1 | postgres | UTF8 | C.UTF-8 | C.UTF-8 | =c/postgres +

| | | | | postgres=CTc/postgres
(6 rows)

postgres=# \c logs
You are now connected to database "logs" as user "postgres".

logs=# SELECT * FROM logs LIMIT 5;
id | user_id | time | logger | level |
→˓ message
----+---------+-------------------------+--------------------------+-------+----------
→˓--------------------------------
1 | | 2017-03-21 20:36:11.342 | istc.bigdawg.LoggerSetup | INFO | Logging

→˓was configured!
2 | | 2017-03-21 20:36:11.427 | istc.bigdawg.Main | INFO | Starting

→˓application ...
3 | | 2017-03-21 20:36:11.435 | istc.bigdawg.Main | INFO |

→˓Connecting to catalog
4 | | 2017-03-21 20:36:11.452 | istc.bigdawg.Main | INFO | Checking

→˓registered database connections
5 | | 2017-03-21 20:36:11.601 | istc.bigdawg.Main | DEBUG | args 0:

→˓bigdawg-scidb-data
(5 rows)

logs=# \q
postgres@bigdawg-postgres-catalog:/$ exit
user@local:~$

The \q command exits psql and returns you to the bigdawg-postgres-catalog container’s shell. The sub-
sequent exit command returns you to your local system shell.

3.4. Output Logs 13

BigDAWG Documentation, Release 0.1

Exporting logs

You can also dump the logs from the container into a text file on your local system with the following command:

docker exec -it bigdawg-postgres-catalog pg_dump -a -d logs -t logs > logs.txt

This will write the contents of the logs table of the logs database to a file called logs.txt on your local system.

3.5 Viewing the Catalog

You may view the contents of the Catalog database by sending queries to the Query Endpoint using the
bdcatalog() syntax.

As an example, you may view the engines table of the Catalog database by executing the following:

curl -X POST -d "bdcatalog(select * from catalog.engines);" http://192.168.99.
→˓100:8080/bigdawg/query/

eid name host port connection_properties
0 postgres0 bigdawg-postgres-catalog 5400 PostgreSQL 9.4.5
1 postgres1 bigdawg-postgres-data1 5401 PostgreSQL 9.4.5
2 postgres2 bigdawg-postgres-data2 5402 PostgreSQL 9.4.5
3 scidb_local bigdawg-scidb-data 1239 SciDB 14.12
4 saw ZooKeeper zookeeper.docker.local 2181 Accumulo 1.6

See the Catalog Manipulation section for more details about the query language, and see the Catalog section for more
details about the contents and purpose of the Catalog.

3.6 Shutdown

When finished, stop and remove the containers:

./cleanup_containers.sh

Stopping a container means that the container ceases execution, but is still visible in the docker ps -a output list.
Removing a container deletes all additional filesystem layers added to the associated image. In either case, the image
is still present on your system, so that it doesn’t need to be pulled from the Docker repository again.

After stopping and removing, you must run the ./setup_bigdawg_docker.sh script to start the BigDAWG
cluster again.

Additionaly, if you’re using Docker Toolbox, you can stop the VM running Docker with the following command:

docker-machine stop default

3.7 Docker Networking and Container Reference

Below is a list of the Docker containers and the primary functions they serve:

bigdawg-postgres-catalog Runs the Catalog, Middleware, and Query Endpoint. The Query Endpoint listens for
queries on bigdawg-postgres-catalog and port 8080

14 Chapter 3. Getting Started with BigDAWG

BigDAWG Documentation, Release 0.1

Fig. 3.3: Docker Networking Configuration

bigdawg-postgres-data1 Runs PostgreSQL loaded with the MIMIC II patient dataset

bigdawg-postgres-data2 Runs PostgreSQL loaded with a copy of the Mimic II patient dataset. Used for demonstrat-
ing migration between 2 PostgreSQL instances

bigdawg-scidb Runs SciDB with MIMIC II waveform data

Accumulo containers: several containers support the Accumulo stack: bigdawg-accumulo-master: Master
server bigdawg-accumulo-tserver0: Handles client reads and writes bigdawg-accumulo-zookeeper bigdawg-
accumulo-namenode bigdawg-accumulo-proxy

In order for the containers to communicate with each other, they are connected to a Docker network named bigdawg,
which was created with the docker network create command. In addition, each container exposes any re-
quired ports for other containers to connect to and publishes ports, which makes them available to both other containers
and the Docker Host. This is all handled by the startup scripts above.

Below is a listing of the ports published by each container.

hostname: bigdawg-postgres-catalog port 5400 for postgres, 8080 for accepting bigdawg queries

hostname: bigdawg-postgres-data1 port 5401 for postgres

hostname: bigdawg-postgres-data2 port 5402 for postgres

hostname: bigdawg-scidb port 1239 for scidb, 49901 for ssh

hostname: accumulo-data-master port 9999 for Master thrift server, 50095 for Monitor service

hostname: accumulo-data-tserver0 port 9997 for TabletServer thrift server

hostname: accumulo-data-tserver1 (no ports)

hostname: accumulo-data-zookeeper port 2181 for zookeeper client connections

hostname: accumulo-data-namenode (no ports)

hostname: accumulo-data-proxy (no ports)

3.7. Docker Networking and Container Reference 15

BigDAWG Documentation, Release 0.1

If using docker-toolbox, the Docker Host will have IP address 192.168.99.100, which you can check using this com-
mand:

$ docker-machine ip default
> 192.168.99.100

Otherwise, if on Linux, the Docker Host IP is your own localhost IP.

3.8 MIMIC II dataset

For the above examples, we are using data collected by the PhysioNet group (https://physionet.org/mimic2/). While
we are only leveraging data the unrestricted parts of the data that do not require registration, we recommend you take
a look at Getting Access to the Full Dataset . Also, if you are using any of their data in your results, please be sure to
cite them appropriately.

3.9 Install the Administrative Web Interface

A very basic administrative web interface is included with this release, which will let you see the status of the Big-
DAWG cluster of databases, start and stop containers, and view the Catalog objects table.

You can view a video demonstration here

Fig. 3.4: Container Status and Start/Stop Interface

16 Chapter 3. Getting Started with BigDAWG

https://physionet.org/mimic2/
https://physionet.org/mimic2/demo/
https://physionet.org/mimic2/mimic2_access.shtml
http://tiny.cc/idggjy

BigDAWG Documentation, Release 0.1

Fig. 3.5: Catalog Objects Interface

3.9. Install the Administrative Web Interface 17

BigDAWG Documentation, Release 0.1

Requirements:

You will need pip to install the python dependencies.

This interface has been tested with python versions 2.7.10, 2.7.11, and 3.5.2.

Installation instructions:

Note: If running on Mac or Windows, run the UI in a Docker Quickstart Terminal because Docker commands must
be accessible by the Flask app.

Change directory to the “admin_ui” directory of the project root.

Install the python requirements with pip:

pip install -r requirements.txt

Edit the text file “catalog_config.txt” and configure the following credentials to connect to the Catalog database:

database=bigdawg_catalog
user=pguser
password=test
host=192.168.99.100
port=5400

Run the server with:

export FLASK_APP=app.py
flask run --host=0.0.0.0

The output will specify the local host and IP:

$ flask run --host=0.0.0.0
> * Serving Flask app "app"
> * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Navigate to the address shown above in a web browser and it will display the web interface.

See usage instructions in the Personalizing the setup section.

18 Chapter 3. Getting Started with BigDAWG

https://pypi.python.org/pypi/pip

BigDAWG Documentation, Release 0.1

Fig. 3.6: Administrative Web Interface

3.9. Install the Administrative Web Interface 19

BigDAWG Documentation, Release 0.1

20 Chapter 3. Getting Started with BigDAWG

CHAPTER

FOUR

BIGDAWG MIDDLEWARE INTERNAL COMPONENTS

This section describes each Middleware component and their interaction in more technical detail. It is meant for
contributors to BigDAWG or for adaptation of the Middleware to your own project or Polystore implementation.

Fig. 4.1: System Overview

The major components of the BigDAWG middleware are shown in the figure above. The sections below provide a
technical description of each.

4.1 Query Endpoint

The Query Endpoint is responsible for accepting user queries, passing them to the Middleware, and responding with
results.

The Query Endpoint is a simple HTTP server that’s executed by the istc.bigdawg.main() method. The host-
name/IP address and port used by this server is configurable by setting the following configuration properties:

grizzly.ipaddress=localhost
grizzly.port=8080

See the Getting Started with BigDAWG section or example queries that can be passed to the Query Endpoint. For more
information on the syntax of query langage, refer to BigDAWG Query Language.

21

BigDAWG Documentation, Release 0.1

4.2 Middleware Components

The middleware has four components: the query planning module (planner), the performance monitoring module
(monitor), the data migration module (migrator) and the query execution module (executor). Given an incoming
query, the planner parses the query into collections of objects and creates a set of possible query plan trees that also
highlights the possible engines for each collection of objects. The planner then sends these trees to the monitor which
uses existing performance information to determine a tree with the best engine for each collection of objects (based on
previous experience of a similar query). The tree is then passed to the executor which determines the best method to
combine the collections of objects and executes the query. The executor can use the migrator to move objects between
engines and islands, if required, by the query plan. Some of the implementation details of each of these components
are described below. Please refer to the publications section to learn more.

4.3 Catalog

The Catalog is responsible for storing metadata about the polystore and its data objects. The Planner, Migrator, and
Executor all rely on the Catalog for “awareness” of the BigDAWG’s components, such as the hostname and IP address
of each engine, Engine to Island assignments, and the data objects stored in each engine.

The Catalog is itself a PostgreSQL cluster with 2 databases: bigdawg_catalog and bigdawg_schemas.

bigdawg_catalog Database

This database contains the following tables.

• engines table: Engines currently managed by the Middleware, including engine name and connection infor-
mation.

Fig. 4.2: Example Engines Table

• databases table: Databases currently managed by the Middleware, their corresponding engine membership,
and connection authentication information.

• objects table: Data objects (i.e., tables) currently managed by the Middleware, including fieldnames and
object-to-database membership.

• shims table: Shims describing which engine is integrated into each island.

• casts table: information about what casts are available between each engine.

22 Chapter 4. BigDAWG Middleware Internal Components

BigDAWG Documentation, Release 0.1

Fig. 4.3: Example Databases Table

Fig. 4.4: Example Objects Table

Fig. 4.5: Example Shims Table

4.3. Catalog 23

BigDAWG Documentation, Release 0.1

bigdawg_schemas Database

This database is made up of tables whose column schema define the schema of each data object. For example, the
table d_patients from the MimicII dataset has the following schema in the bigdawg_schemas database.

CREATE TABLE mimic2v26.d_patients
(

subject_id integer,
sex character varying(1),
dob timestamp without time zone,
dod timestamp without time zone,
hospital_expire_flg character varying(1)

)

4.4 Planner

This section details the Planner. The Planner coordinates all query execution. It has a single static function that
initiates query processing for a given query and handles the result output.

package istc.bigdawg.planner;

public class Planner {
public static Response processQuery(

String userinput, boolean isTrainingMode
) throws Exception

}

The String userinput is the string of a BigDAWG query.

When the boolean of isTrainingMode is true, the Planner will perform query optimization by enumerating all
possible orderings of execution steps that will produce an identical result. Then, the Planner sends the enumeration to
the Monitor to gather query execution metrics. The Planner will then pick the fastest plan to run and return the result
to the Query Endpoint. When isTrainingMode is false, the Planner will consult the Monitor to retrieve the best
query plan based on past execution metrics.

The processQuery() function first checks if the query is intended to interact with the Catalog. If so, the
query is routed to a specical processing module to parse and process these Catalog-related queries. Otherwise,
processQuery() proceeds to parse and processing the query string.

Data retrieval queries are passed as inputs to the constructor of a CrossIslandQueryPlan object. A
CrossIslandQueryPlan object holds a nested structure that represents a plan for inter-island query execution.
An inter-island query execution is specified by CrossIslandPlanNode objects organized in tree structures: the
nodes either carry information for an intra-island query or an inter-island migration.

Following the creation of the CrossIslandQueryPlan, the Planner traverses the tree structure of
CrossIslandPlanNode objects and executes the intra-island queries, invokes migrations, and then produces the
final result.

4.5 Migrator

The data migration module for the BigDAWG polystore system exposes a single convenient interface to other modules.
Clients provide the connection information for source and destination databases as well as a name of the object (e.g.
table, array) to be extracted from the source database, and a name of the object (e.g. table, array) to which the data
should be loaded.

24 Chapter 4. BigDAWG Middleware Internal Components

BigDAWG Documentation, Release 0.1

1 package istc.bigdawg.migration;
2

3 /**
4 * The main interface to the migrator module.
5 */
6 public class Migrator {
7 /**
8 * General method (interface, also called facade) for other modules to
9 * call the migration process.

10 *
11 * @param connectionFrom Information about the source
12 * database (host, port, database name, user name,
13 * user password) from which the data should be
14 * extracted.
15 *
16 * @param objectFrom The name of the object
17 * (e.g. table, array) which should be extracted
18 * from the source database.
19 *
20 * @param connectionTo Information about the
21 * destination database (host, port, database name,
22 * user name, user password) to which the data
23 * should be loaded.
24 *
25 * @param objectTo The name of the object
26 * (e.g. table, array) which should be loaded to
27 * the destination database.
28 *
29 * @param migrationParams Additional parameters for the migrator,
30 * for example, the "create statement" (a statement to create an object:
31 * table/array) which should be executed in the database
32 * identified by connectionTo; data should be loaded to this new
33 * object, the name of the target object in the create statement
34 * has to be the same as the migrate method parameter: objectTo
35 *
36 * @return {@link MigrationResult} Information about
37 * the results of the migration process (e.g. number of
38 * extracted elements (rows, cells) from the destination database,
39 * number of loaded elements (rows, cells) to the destination database,
40 * the duration of the migration in milliseconds.
41 *
42 * @throws MigrationException Information why the migration failed (e.g. no access

→˓to one
43 * of the databases, schemas are not compatible, etc.).
44 *
45 */
46 public static MigrationResult migrate(
47 ConnectionInfo connectionFrom, String objectFrom,
48 ConnectionInfo connectionTo, String objectTo,
49 MigrationParams migrationParams)
50 throws MigrationException;
51 }
52 }

An example of how the data migrator module can be called is presented below.

1 public class UseMigrator {
2 public static void Main(String ... args) {

4.5. Migrator 25

BigDAWG Documentation, Release 0.1

3 logger.debug("Migrating data from PostgreSQL to PostgreSQL");
4 FromDatabaseToDatabase migrator = new
5 FromPostgresToPostgres();
6 ConnectionInfo conInfoFrom = new
7 PostgreSQLConnectionInfo("localhost", "5431",
8 "mimic2", "pguser", "test");
9 ConnectionInfo conInfoTo = new

10 PostgreSQLConnectionInfo("localhost", "5430",
11 "mimic2", "pguser", "test");
12 MigrationResult result;
13 try {
14 result = migrator.migrate(conInfoFrom,
15 "mimic2v26.d_patients",
16 conInfoTo, "mimic2v26.d_patients");
17 } catch (MigrationException e) {
18 logger.error(e.getMessage());
19 }
20 logger.debug("Number of extracted rows: "
21 + result.getCountExtractedElements()
22 + " Number of loaded rows: " +
23 result.getCountLoadedElements());
24 }
25 }

Internally, the Migrator identifies the type of the databases by examinig the connection information. The
ConnectionInfo object is merely an interface and we check what the real type of the object is. The connec-
tion object represents a specific database (e.g. PostgreSQL, SciDB, Accumulo or S-Store). Currently, we support
migration between instances of PostgreSQL, SciDB and Accumulo. There is an efficient binary data migration be-
tween PostgreSQL and SciDB. We work on distributed migrator (at present it works between instances of PostgreSQL)
and tighter integration with S-Store as well as more efficient connection with Accumulo.

Binary migration

The data transformation module, which converts data be- tween different (mainly binary) formats, is the important part
of the data migrator. This module is implemented in C/C++ to achieve high performance. The binary formats require
operations at the level of bits and bytes. Many data formats apply encoding to values of attributes in order to decrease
storage footprint.

To build the C++ migrator navigate to: bigdawgmiddle/src/main/cmigrator/buil in the maven project.
We use CMake to build this part of the project. Simply execute:

cd bigdawgmiddle/src/main/cmigrator/build
cmake ..
make

4.6 Executor

The Executor executes intra-island queries through static functions. The static functions create instances of
PlanExecutor objects that execute individual intra-island queries.

package istc.bigdawg.executor;

public class Executor {

26 Chapter 4. BigDAWG Middleware Internal Components

BigDAWG Documentation, Release 0.1

public static QueryResult executePlan(
QueryExecutionPlan plan,
Signature sig,
int index

) throws ExecutorEngine.LocalQueryExecutionException, MigrationException;

public static QueryResult executePlan(
QueryExecutionPlan plan

) throws ExecutorEngine.LocalQueryExecutionException, MigrationException;

public static CompletableFuture<Optional<QueryResult>> executePlanAsync(
QueryExecutionPlan plan,
Optional<Pair<Signature, Integer>> reportValues

);
}

The PlanExecutor objects are created from QueryExecutionPlan objects that represent execution plans of an
intra-island query. A QueryExecutionPlan holds details of sub-queries that are required for their execution and a
graph that provides dependency information among the sub-queries. The PlanExecutor takes information from a
QueryExecutionPlan object and issues the sub-queries to their corresponding databases and calls the appropriate
Migrator classes to migrate intermediate results.

package istc.bigdawg.executor;

class PlanExecutor {
/**
* Class responsible for handling the execution of a single QueryExecutionPlan

*
* @param plan

* a data structure of the queries to be run and their ordering,

* with edges pointing to dependencies

*/
public PlanExecutor(

QueryExecutionPlan plan
)

}

4.7 Monitor

The BigDAWG monitor is responsible for managing queries.

1 class Monitor {
2 public static boolean addBenchmarks(Signature signature, boolean lean);
3 public static List<Long> getBenchmarkPerformance(Signature signature);
4 public static Signature getClosestSignature(Signature signature);
5 }

The signature parameter is provided to identify a query.

The addBenchmarks method adds a new benchmark. If the lean parameter is false, the benchmark is immedi-
ately run over all of its possible query execution plans (henceforth referred to as QEP).

The getBenchmarkPerformance method returns a list of execution times for a particular benchmark, ordered in
same order that the benchmark’s QEPs are received.

4.7. Monitor 27

BigDAWG Documentation, Release 0.1

The best way to use the module is to add all of the relevant benchmarks first using the addBenchmarks method and
then retrieve information through getBenchmarkPerformance.

One of the more useful features is contained in the getClosestSignature method, which tries to find the closest
matching benchmark for the provided signature. In this way, a user can add many benchmarks that are believed to
cover the majority of query use cases. Then you use the getClosestSignature method to find a matching
benchmark and compare the QEP times to your current signature’s QEPs. On missing any matching signatures, you
can add the current signature as a new benchmark.

There are many opportunities to enhance this feature to improve the matching, possibly by utilizing machine learning
techniques.

The public methods in the Monitor class are the only API endpoints that should be used. In contrast, the
MonitoringTask class updates the benchmark timings periodically and should be run in the background through
a daemon.

28 Chapter 4. BigDAWG Middleware Internal Components

CHAPTER

FIVE

BIGDAWG QUERY LANGUAGE

Fundamentally, BigDAWG is middleware that provides a common application programming interface to a collection
of distinct storage engines. To the typical user, BigDAWG is viewed as a query engine for the polystore system; hence,
understanding how these queries are written is key to understanding BigDAWG.

BigDAWG queries are written with the BigDAWG Query language which uses a functional syntax:

bdrel(...)

A function token (‘bdrel’ in this case) indicates how the syntax within the parenthesis is interpreted. For example, the
‘bdrel’ function token indicates that this is a query for the relational island and any code between the parenthesis will
be interpreted as SQL code.

Five function tokens are defined in BigDAWG. Three function tokens indicate the islands targeted by a query:

• bdrel – the query targets the relational island and uses PostgreSQL.

• bdarray – the query targets the array island and uses SciDB’s AFL query language.

• bdtext – the query targets the text island and uses either SQL or D4M.

The remaining function tokens deal with metadata for the polystore system and the migration of data between islands:

• bdcatalog – the query targets the BigDAWG catalog using SQL.

• bdcast – the query is a cast operation for inter-island data migration.

Queries using the ‘bdcast’ function token behave differently than queries based on the other function tokens. A ‘bdcast’
query is always nested inside other queries to indicate migration of data between islands.

In the next few subsections, we summarize operations supported by each island and provide a formal definition of the
BigDAWG query syntax. See Example Queries for examples of BigDAWG queries.

5.1 BigDAWG Syntax Definitions

BigDAWG Query

BigDAWG Query Syntax:

BIGDAWG_SYNTAX ::=
BIGDAWG_RETRIEVAL_SYNTAX | CATALOG_QUERY

BIGDAWG_RETRIEVAL_SYNTAX ::=
RELATIONAL_ISLAND_QUERY | ARRAY_ISLAND_QUERY | TEXT_ISLAND_QUERY

29

BigDAWG Documentation, Release 0.1

Catalog Manipulation

Catalog manipulation queries are used to directly view the content of the catalog.

You may find the list of catalog_table_name in Catalog.

CATALOG_QUERY ::=
{ bdcatalog(catalog_table_name { [column_name] [, ...] }) }
| { bdcatalog(full_sql_query_applied_to_the_catalog_database) }

Inter-Island Cast

The differences between two data models can give rise to ambiguities when migrating data between them. When
issuing a Cast that invokes an Inter-Island migration, the user avoids such ambiguities by providing the schema used
in the destination island.

Cast Syntax:

BIGDAWG_CAST ::=
bdcast(BIGDAWG_RETRIEVAL_SYNTAX, name_of_intermediate_result, {
{, POSTGRES_SCHEMA_DEFINITION, relational}
| {, SCIDB_SCHEMA_DEFINITION, array}
| {, TEXT_SCHEMA_DEFINITION, text}})

Relational Island

The Relational Island follows the relational data model, where data is organized into tables. The rows of a table are
termed as tuples and columns simply as columns.

The Relational Island currently supports a subset of SQL used by PostgreSQL. It allows you to issue single-layered
SELECT query with filter, aggregation, sort and limit operations.

Relational Island supports the following data types: integer, varchar, timestamp, double, float

Relational Island Syntax:

RELATIONAL_ISLAND_QUERY ::=
bdrel(RELATIONAL_SYNTAX)

RELATIONAL_SYNTAX ::=
SELECT [DISTINCT]
{ * | { SQL_EXPRESSION [[AS] output_name] [, ...] } }
FROM FROM_ITEM [, ...]
[WHERE SQL_CONDITION]
[GROUP BY column_name [, ...]]
[ORDER BY SQL_EXPRESSION [ASC | DESC]
[LIMIT integer]

FROM_ITEM ::=
{ table_name | BIGDAWG_CAST } [[AS] alias]

SQL_EXPRESSION ::=
SQL_NON_AGGREGATE_EXPRESSION
| SQL_AGGREGATE

30 Chapter 5. BigDAWG Query Language

BigDAWG Documentation, Release 0.1

SQL_NON_AGGREGATE_EXPRESSION ::=
literal
| column_name
| { SQL_NON_AGGREGATE_EXPRESSION SQL_BINARY_ALGEBRAIC_FUNCTION SQL_NON_AGGREGATE_

→˓EXPRESSION }
| { - SQL_EXPRESSION }
| {(SQL_EXPRESSION)}
| SQL_CONDITION

SQL_BINARY_ALGEBRAIC_FUNCTION ::=
+ | - | * | / | %

SQL_CONDITION ::=
{ SQL_NON_AGGREGATE_EXPRESSION SQL_CONDITION_OPERATOR

SQL_NON_AGGREGATE_EXPRESSION }
| { SQL_NON_AGGREGATE_EXPRESSION SQL_BINARY_LOGICAL_OPERATOR

SQL_NON_AGGREGATE_EXPRESSION }

SQL_CONDITION_OPERATOR ::=
= | < | > | <= | >= | !=

SQL_BINARY_LOGICAL_OPERATOR ::=
AND

SQL_AGGREGATE ::=
{ SQL_AGGREGATE_NAME([DISTINCT] SQL_NON_AGGREGATE_EXPRESSION [, ...]) }
| { count({ * | SQL_NON_AGGREGATE_EXPRESSION })}
| { width_bucket(SQL_NON_AGGREGATE_EXPRESSION, double_precision_number,

double_precision_number, integer) }

SQL_AGGREGATE_NAME ::=
sum | avg | min | max

POSTGRES_SCHEMA_DEFINITION ::=
({ column_name sql_data_type POSTGRES_COLUMN_CONSTRAINT } [, ...])

POSTGRES_COLUMN_CONSTRAINT ::=
{ [PRIMARY KEY]
| [REFERENCES table_name [(column_of_table_referenced)]] }

[[NOT] NULL]

Array Island

The Array Island follows an array data model, where data is organized into arrays. Arrays are multi-dimensional grids,
where each cell in the grid contains a number of fields. Each dimension of an array is referred to as a dimension and
each field in a cell is termed an attribute. Dimensions assume unique values whereas attributes are allowed duplicates.
A combination of dimension values across all dimensions in an array uniquely identify an individual cell of attributes.

The Array Island currently supports a subset of SciDB’s Array Functional Language (AFL). It allows for project,
aggregation, cross_join, filter and schema reform. Array Island also allows attribute sorting; however, at the moment,
only sort in ascending order is supported.

Array Island supports the following data Types: string, int64, datetime, double, float

5.1. BigDAWG Syntax Definitions 31

BigDAWG Documentation, Release 0.1

Array Island Syntax:

ARRAY_ISLAND_QUERY ::=
bdarray(ARRAY_SYNTAX)

ARRAY_SYNTAX ::=
{ scan(array_name) }
| { project(ARRAY_ISLAND_DATA_SET [, attribute] [...]) }
| { filter(ARRAY_ISLAND_DATA_SET, SCIDB_EXPRESSION) }
| { aggregate(ARRAY_ISLAND_DATA_SET, SCIDB_AGGREGATE_CALL [, ...] [, dimension] [..

→˓.]) }
| { apply(ARRAY_ISLAND_DATA_SET {, new_attribute, SCIDB_NON_AGGREGATE_EXPRESSION}

→˓[...]) }
| { cross_join(ARRAY_ISLAND_DATA_SET [as left-alias], ARRAY_ISLAND_DATA_SET [as

→˓right-alias] [, [left-alias.]left_dim1, [right-alias.]right_dim1] [...]) }
| { redimension(ARRAY_ISLAND_DATA_SET, { array_name | SCIDB_SCHEMA_DEFINITION }) }
| { sort(ARRAY_ISLAND_DATA_SET [, attribute] [...] }) }

ARRAY_ISLAND_DATA_SET ::=
array_name | ARRAY_ISLAND_SYNTAX | BIGDAWG_CAST

SCIDB_EXPRESSION ::=
SCIDB_AGGREGATE_CALL
| SCIDB_NON_AGGREGATE_EXPRESSION

SCIDB_BINARY_ALGEBRAIC_FUNCTION ::=
+ | - | * | / | %

SCIDB_CONDITION ::=
{ SCIDB_NON_AGGREGATE_EXPRESSION SCIDB_CONDITION_OPERATOR SCIDB_NON_AGGREGATE_

→˓EXPRESSION }
| { SCIDB_NON_AGGREGATE_EXPRESSION SCIDB_BINARY_LOGICAL_OPERATOR SCIDB_NON_

→˓AGGREGATE_EXPRESSION }
| { regex({ attribute_name | dimension_name }, 'regex_expression') }
| { iif (SCIDB_BINARY_PREDICATE, SCIDB_ALGEBRAIC_EXPRESSION, SCIDB_ALGEBRAIC_

→˓EXPRESSION) }

SCIDB_NON_AGGREGATE_EXPRESSION ::=
literal
| dimension
| attribute
| { SCIDB_NON_AGGREGATE_EXPRESSION SCIDB_BINARY_ALGEBRAIC_FUNCTION SCIDB_NON_

→˓AGGREGATE_EXPRESSION }
| { - SCIDB_EXPRESSION }
| {(SCIDB_EXPRESSION)}
| SCIDB_CONDITION

SCIDB_CONDITION_OPERATOR ::=
= | < | > | <= | >= | !=

SCIDB_BINARY_LOGICAL_OPERATOR ::=
AND

SCIDB_AGGREGATE_CALL ::=
SCIDB_AGGREGATE_FUNCTION(dimension)

32 Chapter 5. BigDAWG Query Language

BigDAWG Documentation, Release 0.1

SCIDB_AGGREGATE_FUNCTION ::=
sum | avg | min | max

SCIDB_SCHEMA_DEFINITION ::=
<{attribute_name: data_type} {, ...}>
\[{ dimension_name = { integer_lower_bound | * } : { integer_upper_bound | * } ,

→˓integer_cell_size, integer_overlap} [, ...] \];

Text Island

The Text Island logically organizes data in tables, and retrieves data in a key-value fashion. This is modeled after the
data model of the Accumulo engine. When queried for a certain table, it returns a list of key-value pairs. The key
contains row label, column family label, column qualifier label, and a time stamp. The value is a string.

The Text Island query syntax adopts a JSON format using single-quote for labels and entries. The user can issue full
table scan or range retrieval queries.

Text Island supports the following data Types: string

Text Island Syntax:

TEXT_ISLAND_QUERY ::=
bdtext(TEXT_ISLAND_SYNTAX)

TEXT_ISLAND_SYNTAX ::=
{ 'op' : 'TEXT_OPERATOR', 'table' : '(table_name | BIGDAWG_CAST)' [, 'range' : {

→˓TEXT_ISLAND_RANGE }] }

TEXT_ISLAND_RANGE ::=
TEXT_ISLAND_RANGE_START_KEY
| TEXT_ISLAND_RANGE_END_KEY
| (TEXT_ISLAND_RANGE_START_KEY, TEXT_ISLAND_RANGE_END_KEY)

TEXT_ISLAND_RANGE_START_KEY ::=
'start' : \['start_row','[start_column_family]','[start_column_qualifier]'\]

TEXT_ISLAND_RANGE_END_KEY ::=
'end' : \['end_row','[end_column_family]','[end_column_qualifier]'\]

TEXT_OPERATOR ::=
scan

TEXT_SCHEMA_DEFINITION ::=
()

5.1. BigDAWG Syntax Definitions 33

BigDAWG Documentation, Release 0.1

34 Chapter 5. BigDAWG Query Language

CHAPTER

SIX

PERSONALIZING THE SETUP

This section provides some tips on how you can adapt the BigDAWG system for your own data. Specifically, we
describe how to use the administrative web interface, add your own database engine, add your own tables/databases
and tips on how to construct your own island. Some of these may require some level of expertise so please do not
hesitate to contact us if you have any questions!

6.1 Administrative Web Interface:

A very basic administrative web interface is included with this release, which will let you see the status of the Big-
DAWG cluster of databases, start and stop containers, and view the Catalog objects table.

You can view a video demonstration here

Fig. 6.1: Container Status and Start/Stop Interface

6.2 Formulating Example Queries:

todo: (Add information about writing other queries)

35

http://tiny.cc/idggjy

BigDAWG Documentation, Release 0.1

Fig. 6.2: Catalog Objects Interface

6.3 Adding your own data:

You can register a new database with a BigDAWG cluster by adding information about the database to the Catalog.
Once the Catalog is updated, the Middleware is aware of the new database and can perform all island-compatible
queries on it.

For example, assume that you can add a simple relational database named inventory with a table named
products consisting of product information such as the following:

ItemNumber ItemName Price
1 Banana 0.99
2 Apple 1.25
3 Carrot 1.30

There are 3 parts of the Catalog that must be updated. Recall that the Catalog itself is a Postgres database named
bigdawg_catalog.

1.) The databases table requires the following fields:

• dbid: serial integer for referring to the database by ID

• engine_id: serial integer for referring to the type of engine that this database corresponds to. This ID should
be read from the eid value of the

• engines table in the Catalog.

• name: name of the database. In this example, this value would be “inventory”.

• userid: the username used to log into the new database

• password: the password used to log into the new database

36 Chapter 6. Personalizing the setup

BigDAWG Documentation, Release 0.1

For example, an INSERT statement would look like this:

INSERT INTO catalog.databases values(8, 0, inventory, postgres, test);

2.) The objects table requires the following fields:

• oid: serial integer for referring to the new table.

• name: name for the new data object. In this example, the value would be “products”

• fields: A comma-separated string of column names in the products table

• logical_db: An ID referencing the database ID from the databases table

• physical_db: An ID referencing the database ID from the databases table

For example, an INSERT statement would look like this:

INSERT INTO catalog.objects values(52, products, ItemNumber,ItemName,Price, 8, 8);

3.) bigdawg_schemas table:

CREATE TABLE products (ItemNumber integer, ItemName varchar(40), Price real);

6.4 Adding your own engine

This guide provides you a starting point to integrate a database with JDBC driver into the BigDAWG middleware. For
other types of databases, please reach out to us and we will work with you.

1. Find the associated JDBC driver, and add it as a dependency to pom.xml

2. Create the associated ConnectionInfo, DBHandler, DBInstance, etc. classes for the database engine.
(See Postgresql package for reference.)

3. Create a new query generator if existing ones are not fully compatible. Also might need some sort of utility
class to convert datatype names to some common representation (e.g. Postgresql datatypes – see)

4. Modify islands.TheObjectThatResolvesAllTheDifferencesAmongTheIslands.java -
EngineEnum, getQConnectionInfo(), getQueryGenerator(), and anywhere else that would be appropriate.

5. Create Export and Load classes for the Database engine (under migration)

6. Create migrators to/from Postgres (or any other engines you want to migrate to/from)

7. Register the new migrators in Migrator.java

8. When setting up your BigDAWG instance, make sure to add an entry to the catalog to let it know your database
engine exists. Also add entries for the schemas for tables stored on that index.

6.5 Connecting to existing databases

Use can use the middleware distributed in this release to connect to an existing database. For this example, we assume
that you have an existing Postgres instance that you would like to connect to. Let’s assume that the database name if
foo and that this database has two tables foo_table1 and foo_table2.

1. Clone the git repository to a system that can connect to the Postgres database (from https://github.com/
bigdawg-istc/bigdawg):

6.4. Adding your own engine 37

https://github.com/bigdawg-istc/bigdawg
https://github.com/bigdawg-istc/bigdawg

BigDAWG Documentation, Release 0.1

2. In the Postgres database, create two new databases: 1) bigdawg_catalog with schema catalog
and 2) bigdawg_schemas. The bigdawg_catalog database contains a variety of information such
as connection properties, names of tables and schema. Look at /provisions/cluster_setup/
postgres-catalog/bdsetup/catalog_inserts.sql for an example of what tables are filled for
connecting to the various MIMIC II tables. You will need to add the engine connection information in catalog.
In this case, you will add a row to catalog.engines for the existing Postgres database; entries in catalog.databases
for the bigdawg_catalog, bigdawg_schemas, and foo databases. You will also need to add informa-
tion about the tables foo_table1 and foo_table2 to the catalog.objects table.

3) In the bigdawg_schemas database, create empty schemas for the foo database similar to what we
did for the MIMIC II database: ./provisions/cluster_setup/postgres-catalog/bdsetup/
mimic2_schemas_ddl.sql

4. Now, you can compile the code you downloaded.

First, you need to edit file profiles/dev/dev-config.properties so that the middleware knows where to
look for the Postgres engine. Specifically look at the following lines to modify:

==================
Catalog database
==================

postgresql.url=jdbc:postgresql://host:port
postgresql.user=XXXXXXXXX
postgresql.password=XXXXXXXXX

Once you are done editing this file, close and save it and you are ready to package the JAR in the root directory using
the following command:

mvn package -P mit -DskipTests -f pom.xml -q

3. Now that you have packaged the jar, you should be ready to execute it using the following command:

mvn exec:java -f pom.xml -P mit -q

The above command will start the bigdawg instance on the current node you are running on.

4. If you are running the Postgres engine on another host, you need to launch the middleware on that host as well.
For example, you can ssh into that node and use the same command as above to run it.

ssh node
mvn exec:java -f pom.xml -P mit -q

5. Now, you should be ready to issue a query

curl -X POST -d "bdrel(select * from foo.table1);" http://localhost:8080/bigdawg/query

6.6 Adding your own island

This guide provides a road-map for adding new islands to the BigDAWG system. Creating an island involves four
general steps: determine the language and functionalities supported by the island, implement supports for the island
language and logical representations of the functionalities in the BigDAWG context, creating shims between the island
and the database engines, and create a front-end support for other BigDAWG components. We will elaborate on these
steps using the current Text Island as an example.

1. Determining the language and functionalities

38 Chapter 6. Personalizing the setup

BigDAWG Documentation, Release 0.1

We model our island on the functionalities of Apache Accumulo. It is therefore by design to support only
complete or ranged table scans. Therefore, we need to only support one operation: Scan, with optional
range parameters. Consequently, there will not be nested expressions. As with other islands, we will not
reformat the results.

2. Implement supports for the language and its functionalities in the BigDAWG context

For query optimization purposes, functionalities of an island are represented by implementation of Java
interface Operator and its extensions, such as SeqScan, or sequential scan. In our case, we want to
implement a Text Island operator that scans a table, with optional specification of ranges. Therefore, we
want to create the class TextScan that implements SeqScan interface.

Note that to retain extendibility for the Text Island, we first created a parent abstract class named TextOp-
erator that implements the Operator interface; we extended the TextOperator class to create our TextScan.

Language support entails parsing user query into an Abstract Syntax Tree (AST) with Operator nodes. In
our case, each query will consist of a single TextScan and there will not be branches.

We therefore use the JSON to implement our language. In a JSON object, we require the user to pro-
vide a field of table name and an optional JSON object to specify range in the query. We use the
org.json.simple.parser.JSONParser in our language parser to create TextScan operators.

3. Creating shims for BigDAWG Query Executor

At the moment, we only want to connect Accumulo to the Text Island. Therefore we implement the Shim
Java interface to create our shim, TextToAccumulo shim. The virtual functions listed in Shim provides a
very good guideline of what needs to be done to connect Accumulo to the Text Island.

4. Creating planner and executor facing front

We begin by creating the TextIsland interface used by the Planner and Executor. The TextIsland class
implements Java interface Island. In the TextIsland class, we need to define the default database to which
an inter-island intermediate result could be migrated. This is done by looking up the database’s dbid in
the Catalog. The setup and tear down virtual functions are intended for creating and destroying tempo-
rary tables used for inter-island query execution. The virtual function for creating Literal and Constant
Signature asks for a list of constants, therefore we return a list of values used in the range specification.

We then implement IntraIslandQuery Java interface to create the logical intra-island execution plan of
the Text Island. Here, we make use of the setup and tear down functions created in TextIsland to create
support for new tables migrated from another island.

In other islands, an operator such as a Join could take multiple table inputs. The intra-island execution
plan needs to create ‘cut points’ in the AST to divide the AST into containers – sub-queries using naturally
co-located tables – and a remainder – a skeleton AST that executes with migrated intermediate results.
The traverse virtual function is designated to recursively mark natural locations of a table or sub-query
and create containers out of any sub-query whose children are not co-located. pruneChild is used to mark
a node in an AST so that a sub-query starting from the node is used to create a container. It is hinted that
a remainderLoc with a positive value indicate all input tables co-locate and no containers are constructed;
a zero value indicate that at least two containers exist.

getQEPs function lists all viable Query Execution Plans (QEPs) composed from permutations of the
query. A permutation produces the same result as does the original query, yet it has a different order for
Joins. The different permutations are run used by the monitor, which then records performance informa-
tion with regard to each permutation. getQEP (without s) is used to extract a specific QEP.

At last, we modify IslandAndCastResolver to finish the integration, and add new entries to the BigDAWG
Catalog to make them usable.

6.6. Adding your own island 39

BigDAWG Documentation, Release 0.1

40 Chapter 6. Personalizing the setup

CHAPTER

SEVEN

SELECTED BIGDAWG PUBLICATIONS

7.1 Overall architecture:

“The BigDAWG Polystore System and Architecture”, Vijay Gadepally, Peinan Chen, Jennie Duggan, Aaron Elmore,
Brandon Haynes, Jeremy Kepner, Samuel Madden, Tim Mattson, Michael Stonebraker. IEEE High Performance
Extreme Computing, 2016.

BigDAWG overall architecture and details of various middleware components along with some perfor-
mance results.

“The Big Dawg Polystore System”, J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner, S.
Madden, D. Maier, T. Mattson, S. Zdoânik. ACM Sigmod Record, 44(3), 2015.

Original vision paper on BigDAWG architecture.

7.2 BigDAWG applications:

“Demonstrating the BigDAWG Polystore System for Ocean Metagenomic Analysis”, Tim Mattson, Vijay Gadepally,
Zuohao She, Adam Dziedzic, Jeff Parkhurst CIDR’17 Chaminade, CA, USA

This paper describes a second application based on BigDAWG; an oceanography dataset including inte-
gration with the S-Store system for streaming data.

“A Demonstration of the BigDawg Polystore System”, A. Elmore, J. Duggan, M. Stonebraker, U. Cetintemel, V.
Gadepally, J. Heer, B. Howe, J. Kepner, T. Kraska, S. Madden, D. Maier, T. Mattson, S. Papadopoulos, J. Parkhurst,
N. Tatbul, M. Vartak, S. Zdonik. Proceedings of VLDB, 2015.

This paper describes our performance measurements with the MIMCII dataset.

7.3 BigDAWG Middleware:

“The BigDAWG Monitoring Framework”, Peinan Chen, Vijay GAdepally, Michael Stonebraker IEEE High Perfor-
mance Extreme Computing, 2016.

This paper describes the BigDAWG monitoring framework.

“BigDAWG Polystore Query Optimization Through Semantic Equivalences”, Zuohao She, Surabhi Ravishankar, Jen-
nie Duggan IEEE High Performance Extreme Computing, 2016.

This paper describes query optimization in BigDAWG.

“Cross-Engine Query Execution in Federated Database Systems”, Ankush M. Gupta, Vijay Gadepally, Michael Stone-
braker (MIT) IEEE High Performance Extreme Computing, 2016.

41

BigDAWG Documentation, Release 0.1

This paper describes how queries are split between different islands.

“Data Transformation and Migration in Polystores”, Adam Dziedzic, Aaron J. Elmore, Michael Stonebraker

This paper describes how the casts work in BigDAWG.

“Integrating Real-Time and Batch Processing in a Polystore”, John Meehan, Stan Zdonik Shaobo Tian, Yulong Tian,
Nesime Tatbul, Adam Dziedzic, Aaron Elmor

This paper provides details behind the integration of the S-Store streaming system with BigDAWG.

7.4 Contributors

7.5 Acknowledgement

The development of BigDAWG was supported by the Intel Science and Technology Center (ISTC) for Big Data. The
authors also wish to thank collaborators as Brown University, University of Washington, Portland State University,
Universtiy of Tennessee and Intel for their collaboration.

7.6 Contributors

There are a number of people involved in developing the current version of the codebase:

Adam Dziezdzic

Aaron Elmore

Vijay Gadepally

Jeremy Kepner

Kyle O’Brien

Sam Madden

Timothy Mattson

Jennie Rogers

Mike Stonebraker

Zuohao She

7.7 Alumni/Collaborators

We are fortunate to have a number of collaborators who have helped us along the way:

Magdalena Balazinska, University of Washington

Leilani Battle, MIT CSAIL

Ugur Cetintemel, Brown University

Peinan Chen, MIT CSAIL

Ankush Gupta, MIT CSAIL

Brandon Haynes, University of Washington

42 Chapter 7. Selected BigDAWG Publications

BigDAWG Documentation, Release 0.1

Jeffrey Heer, University of Washington

Bill Howe, University of Washington

Tim Kraska, Brown University

David Maier, Portland State University

Stavros Papadopoulos, Intel

Jeff Parkhurst, Intel

Surabhi Ravishankar, Northwestern University

Ran Tan, North Carolina State University

Nesime Tatbul, Intel and MIT

Kristin Tufte, Portland State University

Manasi Vartak, MIT CSAIL

Katherine Yu, MIT CSAIL

Stan Zdonik, Brown University

7.7. Alumni/Collaborators 43

BigDAWG Documentation, Release 0.1

44 Chapter 7. Selected BigDAWG Publications

CHAPTER

EIGHT

FREQUENTLY ASKED QUESTIONS

1.) What is BigDAWG?:

BigDAWG (short for Big Data Working Group) is a reference implementation of a Polystore database.
Essentially, BigDAWG provides the middleware needed to talk to multiple disparate engines (for example,
SQL, NoSQL and NewSQL engines) while using multiple data model and programming languages (for
example, SQL, AFL, AQL). More details about BigDAWG can be found in our publications.

2.) Where do I download get started and download everything I need to see what you have released?:

See Getting Started with BigDAWG for details.

3.) How do I modify the queries or make my own?:

See Section BigDAWG Query Language

4.) How do I add my own engine?:

See Section BigDAWG Query Language and contact us for help! Perhaps someone has already integrated
(or is in the process of integrating) the engine of interest.

5.) How do I add my own data/tables?:

We’ve distributed a handy Python script that can help you load data. See Personalizing the setup for
details on how to use this. If you have more questions, of course, email us!

6.) What is the query API?:

Section BigDAWG Query Language addresses the query language we use.

7.) How do I create a new island?:

Looks at Section Personalizing the setup for insight on how to do this. Please feel free to reach out to us
if you have any other questions or comments.

8.) How do I contact the development team with bugs, questions, etc.?

Email us at bigdawg-help@mit.edu

9.) How is BigDAWG licensed?

The BigDAWG middleware is licensed under the terms of the BSD 3-clause license. Please note that
external componenents such as database management engines may have their own license agreements.
Please reach out to us for specific licensing questions.

45

http://wp.sigmod.org/?p=1629

	Welcome to BigDAWG documentation
	Introduction
	A simple example
	Get the code
	Contributing
	Table of Contents

	Introduction and Overview
	Team
	Polystore Systems
	BigDAWG Approach
	Major BigDAWG Components
	MIMIC II dataset

	Getting Started with BigDAWG
	Prerequisites
	BigDAWG Cluster Setup Steps
	Run Example Queries
	Output Logs
	Viewing the Catalog
	Shutdown
	Docker Networking and Container Reference
	MIMIC II dataset
	Install the Administrative Web Interface

	BigDAWG Middleware Internal Components
	Query Endpoint
	Middleware Components
	Catalog
	Planner
	Migrator
	Executor
	Monitor

	BigDAWG Query Language
	BigDAWG Syntax Definitions

	Personalizing the setup
	Administrative Web Interface:
	Formulating Example Queries:
	Adding your own data:
	Adding your own engine
	Connecting to existing databases
	Adding your own island

	Selected BigDAWG Publications
	Overall architecture:
	BigDAWG applications:
	BigDAWG Middleware:
	Contributors
	Acknowledgement
	Contributors
	Alumni/Collaborators

	Frequently Asked Questions

